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Abstract A substantial time savings in the collection of

multidimensional NMR data can be achieved by coupling

the evolution of nuclei in the indirect dimensions. In order

to save time, the sampling of the indirect dimensions is

inherently incomplete. Therefore, many algorithms and

samplings schemes have been developed aimed at sepa-

rating the coevolved frequencies into analyzable data with

limited artifacts. This paper extends the use of circulant

matrices to describe coupled evolution with convolutions.

By understanding the data in terms of convolutions, there is

an exact solution to the inversion problem of extracting the

orthogonal vectors from the coupled dimensions. Previ-

ously, this inversion problem has been solved using peak

coordinates extracted from spectra. In contrast, the method

described here uses spectra directly. This solution suggests

a simple sampling scheme of collecting N orthogonal

spectra, and N ? 1 projections at specific projection

angles, however, the theory developed can be extended

generally to arbitrary projection angles. The circulant

matrix methodology is demonstrated for simulated and real

data. Further, an algorithm for separating overlapped sig-

nals in the detected dimension is presented. The algorithm

involves the forward calculation of the coupled spectra

from the orthogonal spectra, followed by back calculation

of the orthogonal spectra from the coupled spectra, thus

permitting rigorous cross-validation. This algorithm is

shown to be robust in that erroneous solutions give rise to

large artifacts.

Keywords NMR � Coevolution � Multi-way

decomposition � Projection reconstruction

Introduction

Multidimensional NMR is a powerful technique for ana-

lyzing molecules of various sizes. In order to gain more

information about very complex molecules, such as pro-

teins, spectra of increasing dimensions are utilized to ask

increasingly sophisticated questions about molecular

structure. However, the cost of more information is a

substantial increase in sampling time for uniform sampling

of the indirectly detected dimensions. As an alternative,

many non-uniform sampling (NUS) techniques have

emerged as time saving solutions (Kupce and Freeman

2003; Ding and Gronenborn 2002; Kim and Szyperski

2003). Some of these methods attempt to reconstruct the

multidimensional spectra from NUS data (Kupce and

Freeman 2004; Venters et al. 2005; Mobli et al. 2006) and

many good solutions exist that approximate the uniform

sampled data with few artifacts (Coggins and Zhou 2007;

Marion 2006). Philosophically, these methods attempt to

prevent artifacts by ‘‘filling in’’ the data points that were

not sampled with various algorithms, or by judiciously

choosing the data points sampled. Other methods do not

attempt to reconstruct the N dimensional spectra, but

instead use the peak coordinates to solve a series of linear

equations that describe the coupled frequencies (Hiller

et al. 2005; Malmodin and Billeter 2005b, Moseley et al.

2004; Eghbalnia et al. 2005; Fiorito et al. 2006). This is

mathematically sound, however, it can be unsatisfying to
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spectroscopists accustomed to analyzing spectra and not

tables of data. Additionally, accurate peak picking requires

spectra with good signal to noise.

Fundamental to most of the NUS techniques is the

coupling of the evolution periods for the indirectly detected

dimensions. In the vocabulary of projection reconstruction

techniques, the spectra with coupled evolution periods are

the tilted projections, and the spectra without coupled

evolution periods are the orthogonal spectra. The evolution

of a peak in a tilted projection is the product of the cor-

responding orthogonal data, and the Fourier transform of

the product of two functions is a convolution. Hence, the

relation between the orthogonal spectra and tilted projec-

tion can be described with convolutions (Malmodin and

Billeter 2005a).

The method PRODECOMP (Malmodin and Billeter

2005a, 2006) deviates from other NUS techniques in that

PRODECOMP works with tilted projections but does not

attempt to reconstruct the N dimensional spectra. Instead it

optimizes a proposed model of the orthogonal spectra,

which they call ‘‘shapes’’. These shapes form the basis for

the assignments. The shape model is tested by calculating

the tilted projections using the convolution relationship.

Importantly, the convolution relationship is only true on a

peak by peak basis. If there are overlapping peaks in the

directly detected dimension, the convolution of the

orthogonal spectra does not reproduce the projected spec-

tra. Using a minimization procedure called multiway

decomposition (Billeter and Orekhov 2003; Korzhnev et al.

2001; Orekhov et al. 2001, 2003), orthogonal spectra are

determined that consistently match the tilted projections

and consistently resolve the overlap. In essence, the

orthogonal spectra are determined from the tilted projec-

tions, using a minimization procedure.

This paper demonstrates that instead of a minimization

procedure, the orthogonal spectra can be used to exactly

calculate the tilted projections and vice versa, thus permit-

ting rigorous cross-validation. Similar to the PRODECOMP

method of separating peaks, overlapping peaks can be dif-

ferentiated by a failure of the algorithm to reproduce the data

acquired. By testing various combinations of peaks against

the data, the correct assignments can be determined. The

elegance and novelty of this protocol is that it utilizes spectra

at every step, and hence avoids reconstructions or minimi-

zations. These features will be demonstrated with real data.

Methods

NMR data were collected using the protein NuiA (Kirby

et al. 2002), a 138 residue protein, at a concentration of

approximately 1 mM at 25�C. The data presented was

acquired on a Varian INOVA spectrometer with an 11.7 T

magnet and cryogenically cooled probe. The pulse

sequence used was the (4,2)D-HNCOCA sequence (Vent-

ers et al. 2005) provided with Varian’s BIOPACK. All the

orthogonal dimensions were acquired with a 4,000 Hz

spectral window. While not a requirement, using a constant

spectral window simplified the calculations because all of

the data had the same Hz/point so that scaling for further

manipulations was not required. The HN-CA orthogonal

plane was acquired with 64 data points in the indirect

dimension, the HN-CO plane with 33 points, and the HN-N

plane with 94 points. Each projection was acquired with 64

data points in the indirect dimension. The effective spectral

window of the projections can be calculated according to

Venters et al. (Venters et al. 2005). All data were linear

predicted to twice the number of acquired data points, and

zero filled to 256 points using NMRPIPE (Delaglio et al.

1995). PRSP separates the hypercomplex data into com-

plex data, resulting in four sub-spectra with opposite signs

for the frequency of two of the indirect dimensions, anal-

ogous to quadrature detection in traditional sampling

(Coggins and Zhou 2006). For simplicity these will be

referred to as the quadrature detected spectra. Simulations

and calculations with experimental data were carried out

using the MATLAB platform (The Mathworks Inc.) using

the equations described herein. The MATLAB code is

available upon request.

In order to clarify the vocabulary, take for example the

(4,2)D-HNCOCA experiment with three indirectly detected

dimensions. Three 2D orthogonal planes can be acquired

that collect (CA,H), (CO,H), and (N,H). An orthogonal

vector refers to the strip taken at a given amide proton fre-

quency (directly detected) of any of these planes. Note that in

this paper, coupling refers exclusively to the coupling of

acquisition times of the indirect dimensions, and not any

other kind of coupling common to NMR. Additionally, all

the manipulations between the orthogonal spectra and the

projection spectra are in the frequency domain.

Where needed, spectra with multiple peaks were sepa-

rated into spectra with single peaks manually using the

following procedure. A 1D spectrum with two peaks was

copied and then one of the peaks would be ‘‘covered up’’

by replacing the region of the peak with noise. The noise

was a region with no peaks from the same 1D spectra,

usually sampled from the far downfield region.

Results

Theory and simulations

In a coupled evolution NMR experiment, the time periods

of the indirectly detected nuclei are incremented simulta-

neously. The relative size of the increments from one
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evolution time to another defines a projection angle (Kupce

and Freeman 2004), which for two indirectly detected

evolution times t1 and t2 is defined by a:

tan a ¼ Dt2

Dt1

ð1Þ

For more dimensions it is convenient to write the

projection angles in terms of direction cosines (Venters

et al. 2005). A normalized vector pointed in any direction

in space can be recast in terms of angles by simply taking

the arccosine of the normalized size in each dimension.

The frequency of a peak in a tilted projection (xTILT) can

be determined by the relation:

xTILT ¼
Xn

i¼1

xi cos ai ð2Þ

where i increments over n coevolving dimensions, ai is the

projection angle for a given dimension, and xi is the fre-

quency in the orthogonal vector for that dimension. This

equation works well for determining peak positions and

these relations have been utilized to determine assignments

with very good success (Malmodin and Billeter 2005b;

Eghbalnia et al. 2005; Fiorito et al. 2006).

It is more difficult to work directly with spectra. The

theory of how to do this was illustrated by Malmodin and

Billeter; the relationship of coupled evolution periods can

be expressed with a convolution (Malmodin and Billeter

2005a). For equal incrementing of t1 and t2, the projection

angle from Eq. 1 would be 45�, and the projected vector

can be calculated from the convolution of the two

orthogonal vectors. Malmodin and Billeter (2006) further

point out that these convolutions can be conveniently cal-

culated with circulant matrices. A circulant matrix is made

by taking a vector (or 1D spectra) and in each successive

row of the matrix, shifting all the elements by 1 column

until a square matrix is made. For example a vector a of N

elements would make a circulant matrix as illustrated in

Eq. 3.

a1 a2 a3 . . . aN

aN a1 a2 . . . aN�1

. . .
. . .

a2 a3 . . . aN a1

2

66664

3

77775
¼ A ð3Þ

In order to make a clear distinction between the vectors

and the corresponding circulant matrices, the following

convention will be used. Lower case letters will represent

the vector or spectra, and capital letters will represent the

corresponding circulant matrix. So the vector a can be

formed into a circulant matrix A according to Eq. 3.

Malmodin and Billeter calculate the convolution c, of a and

b as

a � b ¼ Ab ¼ c ð4Þ

where the asterisk represents the convolution operation

(Malmodin and Billeter 2006). This is convenient for 45�
projections of two vectors. To extend this to more

simultaneously evolved dimensions and other angles, it is

helpful to use circulant matrices at all times and write:

AB ¼ C ð5Þ

so that more matrix multiplications can be strung together.

Except for a possible sign change to Eq. 4, these are

mathematically equivalent, but when using Eq. 5 the vector

c is extracted from the first row of the matrix C.

Circulant matrix multiplication for convolutions very

nicely takes into account folding of peaks. However, in

general, it impossible to determine whether a peak was

folded or not. This discrepancy can be resolved by ‘‘zero

padding’’ a and b, prior to convolution. The term zero

padding will refer to adding zeros in the frequency domain,

to avoid confusion with the more common ‘‘zero filling’’ of

the time domain in NMR. Effectively, the zero padding

simulates a larger spectral window for the convolution to

guarantee peaks are not aliased. However, with padding, c

becomes larger than it would be without padding. To get

back to the units, in Hz per point, of a and b, one needs to

interpolate or down-sample c to the number of points

before a and b are ‘‘zero padded.’’

To illustrate the zero padding with an example, assume

that there are two Lorenztian line shapes, a and b shown in

blue in Fig. 1a, which represent the spectra from orthog-

onal vectors. The peak centers of a and b are at 50 and 150,

on a scale with arbitrary units, 1–256. To calculate the

spectra of a 45� projection of a and b, one multiplies AB.

After convolution, the vector c has a peak at 200.

Remember there are twofolding possibilities for c, which

could be either a peak at 100 or 128 ? 100, illustrated with

black open circles. If we now zero pad a and b with 256

extra points out to 512, a peak appears at 200, which when

downsampled to half as many points (the original units of A

and B) results in a Lorentzian shaped peak at 100, illus-

trated with the cyan colored asterisks. To check the peak

position from the convolutions with projection theory,

Eq. 2 predicts for a 45� projection the peak position will be

at 100, on a scale of 256 points. For details of this calcu-

lation, please see the Supplementary material. This result is

illustrated in Fig. 1a with a Lorenztian lineshape drawn in

red centered at 100, and it agrees with that predicted from

circulant matrix multiplication with zero padding.

The zero padding of the vectors to prevent folding can

be generalized. For a vector size N, and for M number of

matrix multiplications, zeros should be added until the

size is N times M. The vector a with zero padding will

look like:
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a ¼ a1 a2 a3 . . . aN 0Nþ1 . . . 0MN½ � ð6Þ

Additional matrix multiplications can be used to

calculate the convolutions for other projection angles.

The 45� projection described above can be viewed as a

vector that points to the coordinates (1,1), and the

convolution required to describe that projection requires

the multiplication of one A matrix and one B matrix. For a

projection vector that points to the coordinates (3,2), the

convolution would require the multiplication of three A

matrices and two B matrices or AAABB = C (Malmodin

and Billeter 2006). This requires M = 5 matrix

multiplications resulting in five folding possibilities, as

shown with the black circles in Fig. 1b. If a and b are zero

padded to 5 times their original size, and c is subsequently

downsampled to the right number of points, the result is

shown again with the cyan asterisks in Fig. 1b. To check

that the convolution gives the same peak position as

projection theory, one-first calculates that the (3,2)

projection vector corresponds to projection angles of 33.6

and 56.3. The Supplementary material shows that on a

scale of 256 points, the peak center should be at 90.0 which

it is, as shown by the red line in Fig. 1b.

To generalize this to more dimensions and arbitrary

angles, one simply writes the coordinates of any projection

desired. For three indirect dimension this could be written

with (x,y,z) or for N dimensions could be written more

generally (d1,d2, d3, …, dN). The projection angles are the

conversion of this vector into direction cosines. The cor-

responding matrix multiplications to get from the

orthogonal vectors written for three indirect dimensions a,

b, c, or for N indirect dimensions o1, o2, o3, …, oN to the

convolution or projection are

AxByCz ¼ R
QN

i¼1

Odi
i ¼ R

ð7Þ

where R is the resulting convolution, and the powers refer

to the number of successive matrix multiplications. In order

to get a unique peak position from the convolution, M zero

pads will be required (with subsequent downsampling)

where

M ¼ xþ yþ z

M ¼
XN

i¼1

di

ð8Þ

Equation 8 shows both the case for three indirect

dimensions and more generally for N indirect

dimensions. It is easiest to start with small integer values

of di but note that this is not a requirement. Theoretically,

any angle expressed in direction cosines can be

approximated with integer coordinates up to the accuracy

desired. The downside of starting with projection angles is

that for large values of di the matrices become

inconveniently large for computation if zero padding the

vectors. In summary, projections at any angle, in any

number of dimensions can be described by the

multiplication of circulant matrices using Eqs. 7 and 8.

So far, the equations describe the calculation of the

convolution from the orthogonal vectors. Is it possible to

work backwards from the convolutions to the orthogonal

Fig. 1 Using circulant matrices to calculate convolutions and the

relation to projection reconstruction. a, b Blue lines labeled a and b
are simulated Lorenztian line shapes. Using circulant matrices to

calculate the convolution of a and b, results in multiple possible

frequency solutions shown with open black circles labeled with a

black c. Zero padding a and b results in a unique solution to the

convolution (cyan asterisks labeled cZP). This is equivalent to the

projection reconstruction that would predict a Lorentzian given by the

red line. a, b Simulate projection angles of (45, 45) and (33.6, 56.3)
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vectors? For Eq. 5 there exists an exact solution to the

inversion of B, so that given B and C, one can solve for A

(Davis 1994). For circulant matrices A, B, and C derived

from the vectors a, b, and c, the vector a can be back

calculated from the vectors b and c using the following

relation:

a ¼ F�1 FðcÞ
FðbÞ

� �
ð9Þ

where F represents the Fourier transform and F-1

represents the inverse Fourier transform. Equation 9 is a

rearrangement of the familiar convolution theorem, which

is well known in NMR, that states the Fourier transform of

the convolution of a and b is equal to the product of the

Fourier transform of a and the Fourier transform of b:

Fða � bÞ ¼ FðaÞFðbÞ ¼ FðcÞ ð10Þ

Note that the variables a, b, and c are arrays so that the

multiplication and division in Eqs. 9 and 10 refer to

element by element operations. To return to the discussion

of projections, this provides the needed theory to back

calculate orthogonal vectors from projections.

To see how this might be helpful for multidimensional

NMR experiments, we can write out the following series of

projections for a hypothetical experiment with three indi-

rectly detected dimensions. The corresponding projection

coordinates and angles for the experiments would be:

1;1;1ð Þ ¼ 54:7;54:7;54:7ð Þ ¼ R1 ð11aÞ
2;1;1ð Þ ¼ 32:3;65:9;65:9ð Þ ¼ R2 ð11bÞ
1;2;1ð Þ ¼ 65:9;32:3;65:9ð Þ ¼ R3 ð11cÞ
1;1;2ð Þ ¼ 65:9;65:9;32:3ð Þ ¼ R4 ð11dÞ

These would correspond to the following in our matrix

nomenclature using Eq. 10:

ABC ¼ R1 ð12aÞ
AABC ¼ R2 ð12bÞ
ABBC ¼ R3 ð12cÞ
ABCC ¼ R4 ð12dÞ

At this point it is important to state a few theorems about

circulant matrices. The multiplication of circulant matrices

always results in a circulant matrix, and the multiplication

of circulant matrices commutes (Davis 1994). This allows a

substitution of Eq. 12a into Eqs. 12b–12d, with the result:

AR1 ¼ R2

BR1 ¼ R3

CR1 ¼ R4

ð13Þ

And from Eq. 9 we can rearrange Eq. 13 to see:

a ¼ F�1 Fðr2Þ
Fðr1Þ

� �

b ¼ F�1 Fðr3Þ
Fðr1Þ

� �

c ¼ F�1 Fðr4Þ
Fðr1Þ

� �
ð14Þ

This suggests that by acquiring the four projections

proposed in Eq. 11a, one could back calculate the

orthogonal projections, exactly.

As a technical note, Eqs. 9–14, move freely back and

forth between the circulant matrix and vector representa-

tions of the spectra. This is just a matter of preference,

based on considerations of the vector size. Equation 13

could just as well be written, a*r1 = r2. However, an

element by element convolution results in 2N-1 points,

whereas circulant matrix multiplication always results in

another square matrix of the same size. Both are valid ways

to calculate convolutions, but require different interpola-

tions or zero filling to correctly match the units of the

resulting spectra. Using circulant matrices for the forward

calculation and vectors for the backward calculation was

simply convenient in terms of programming.

To continue the discussion of vector size, the relative

size of the vectors when performing the back calculation

requires comment. Figure 2 illustrates what parts of the

vectors are data versus zeros or noise. First recall that in

order to forward calculate r1 from a, b, and c, each vector

would be zero padded to 3 times the original size, M = 3,

see Fig. 2a. To calculate r2 (M = 4) from a, b, and c each

vector would be zero padded to 4 times the original size,

see Fig. 2b. Therefore to multiply AR1 = R2, we should

first zero pad both a and r1 to the size of r2, M = 4. The r1

data is the convolution of three orthogonal vectors, so it

should be interpolated to M = 3 size, to be appropriately

scaled relative to r2. Visually this is shown in Fig. 2c.

Therefore for the backwards calculation, the opposite needs

to be done. The r2 vector will be interpolated to M = 4

size, and the r1 vector interpolated to M = 3, and then

padded to M = 4. This time the padding needs to be noise

to prevent dividing by zero in Eq. 14. In general, the noise

vector was extracted from a region of the 2D projection

with no peaks, and no values near zero. Then, the result a is

extracted from the first M = 1 data points after the inverse

Fourier transform, as illustrated in Fig. 2d. All of the zero

padding and scaling required for the calculations in this

paper is tabulated in the Supplementary material.

Results from experimental data

To demonstrate this experimentally, the projections R1–4

from Eq. 11, and the three orthogonal planes of the (4,2)D-
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HNCACO experiment were acquired using the protein

NuiA (Kirby et al. 2002; Venters et al. 2005). Figure 3a

shows the HN strip of S137 from the r2 projection in black.

The line in red shows the r2 vector extracted from the R2

matrix calculated according to the formula above for AR1.

There is excellent agreement between the experimental

data and the calculated spectra. Figure 3d demonstrates the

backwards calculation of vector a using Eq. 14. Shown in

black in Fig. 3d, is the HN strip of S137 from the CA plane

(1,0,0). Calculating a from r2 and r1 according to Eq. 14

results in the black line in Fig. 3d. Again the results are in

excellent agreement for the frequency, but this time the

a

b

c

r1

a

a

b

c

r2

a

r1

r2

r2

r1

a

M 1 2 3 4

a

b

c

d

Fig. 2 Zero padding and

scaling to get unique solutions.

Solid lines represent data, and

thin lines represent zero

padding. Thin dashed lines
represent padding with noise

instead of zeros to avoid

dividing by zero. Colors have

been added to help differentiate

a, b, c, r1 and r2. a, b Depict the

data and zero padding needed to

execute Eqs. 12a and 12b

respectively, c the needed zero

padding for Eq. 13, where a
could be a, b, or c. Similarly, d
shows the needed noise padding

for Eq. 14. The number of

matrix multiplications, or M, as

defined by Eq. 8 is displayed at

the bottom as a ‘‘scale’’

Fig. 3 Forward and backward calculations. a–c Experimental data

from the amide of S137 in black from the projections R2–4. The red
lines are the calculated spectra according to Eq. 13. d–f the

orthogonal vectors (CA, CO, and N respectively) of S137 are shown

in red. The calculated spectra according to Eq. 14 is shown in black.

The inset equations are color coded with the lines. The X-axis scale is

in points, which is convenient for matrix multiplication. The data in a,

b and c were collected with a spectral window of 10.68 kHz, and the

data in d, e, and f were collected with a spectral window of 4 kHz

18 J Biomol NMR (2009) 44:13–23
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linewidth is noticeably different due to the difference in

resolution of the projections and the orthogonal vectors.

For completeness, Fig. 3b and c show the forward calcu-

lations of BR1 = R3 and CR1 = R4 respectively, and

Fig. 3e and f show the backwards calculation of the CO (b

vector) and the N (c vector) according to Eq. 14 respec-

tively. It should be noted that in these figures and

calculations all the quadrature detected data of each pro-

jection was utilized, which will be discussed in greater

detail later.

The mismatch of the linewidth in the backwards cal-

culation is due to the difference in resolution of the

projections and orthogonal spectra. The projection R1 was

acquired a 12.02 kHz effective spectral window, and R2-4

were acquired with a 10.68 kHz effective spectral window.

Each projection was acquired with 64 data points in the

indirect dimension, for a resolution of about 156–188 Hz/

point. In contrast, the red lines in 3d–f were acquired at 62,

125, and 42 Hz/point, respectively, so the results are con-

sistent with the calculated peaks retaining the resolution of

the data from which they were derived. Potentially con-

fusing, the linewidths in Fig. 3a–c appear narrower, but in

fact are not. The scale in Hz instead of points for Fig. 3a–c

is 10.68 kHz vs. 4,000 Hz in Fig. 3d–f, so the lines appear

narrower in Fig. 3a–c but are in fact similar to Fig. 3d–f.

There is a relation between the coordinate representation

of the projection and the forward and back calculations.

This becomes clear if we treat the coordinates like a vector.

The coordinates (1,0,0) become [1 0 0]. If we add [1 0

0] ? [0 1 0] ? [0 0 1] = [1 1 1] this is equivalent to the

forward calculation, ABC = R1. In other words, multiply-

ing the circulant matrices is the same as adding the vectors

describing the projections. In contrast, the backward cal-

culation is the same as subtracting the vectors. In other

words [2 1 1] – [1 1 1] = [1 0 0]; that is a can be extracted

from r1 and r2. This formula shows how more projections

could be acquired to sort out degeneracies, and how the

various projections are related. This formula is implicit in

previous work using the forward calculation (Malmodin

and Billeter 2006), but is explicitly stated for the forward

and backward calculation here.

To test the predictions of this model of adding and

subtracting the projection coordinates, we can utilize the

data already collected in order to obtain quadrature

detection that has not been dealt with up to this point. In

order to collect a (4,2)D projection, four data sets are

actually collected and in post processing added and sub-

tracted such that the sign of the first two indirectly detected

dimensions oscillates. The R2 vectors after post processing

can be represented as [2 1 1], [2 -1 1], [-2 1 1], and [-2

-1 1]. If we subtract, or backwards calculate, a from the

respective vectors of R1([±1 ±1 1]), we should get [1 0 0],

[1 0 0], [-1 0 0], and [-1 0 0]. Figure 4 shows such

calculations and how well each matches up with a, shown

Fig. 4 Examples of vectors

with positive and negative

frequencies. Red lines represent

data, and black lines represent

calculated spectra. a The

backward calculation using the

[2 1 1] and [1 1 1] vectors.

Similarly, b uses the [2 -1 1]

and [1 -1 1] vectors, c uses the

[-2 1 1] and [-1 1 1] vectors,

and d uses [-2 -1 1] and [-1

-1 1] vectors

J Biomol NMR (2009) 44:13–23 19

123



in red. Figure 4a, b highlight a good match, while Fig. 4c

and d show that we indeed extract the negative frequency,

shown in black. If we reverse the calculated vectors that

have the opposite sign, and then sum all four calculated

vectors in Fig. 4, we obtain the results shown in Fig. 3a.

This demonstrates the utility of understanding the addition

and subtraction of the vector model of the projections, and

that all of the data in an experiment can be utilized for

signal averaging.

Separating overlap

The problem with describing coevolution with convolu-

tions is that when there is overlap in the directly detected

dimension, the convolution does not reproduce the data.

This is because the relations are true only on a peak by

peak basis. Therefore, this section will explore separating

the spectra into data with only one peak and testing various

combinations of peaks against the data using the relations

above to generate assignments. The separation procedure

relies on the fact that erroneous combinations of peaks will

lead to large errors and not match the data. The following

section demonstrates the feasibility of this separation

procedure.

Figure 5a shows the spectra of two residues with over-

lapping amide proton frequencies, namely T50 and W84, in

the (4,2)D-HNCACO data collected on the protein NuiA.

There are two peaks in the CA strip shown in blue, two

peaks in the CO strip shown in green, and two peaks in the

N strip shown in red. Only one combination of the CA, CO,

and N vectors should correctly reproduce the [1 1 1] pro-

jection. The two peaks in the CA strip were manually

Fig. 5 Separation of peaks

using Eq. 12. a The amide

vectors from the orthogonal

planes of the CA (labeled A,

blue), CO (labeled B, green),

and N (labeled C, red) at

6.7 ppm using solid lines. There

are peaks from two overlapping

residues T50 and W84. To

differentiate the peaks the

vectors were split in two and

labeled 1 (asterisks) or 2

(circles). Using Eq. 12a, four

combinations were calculated

according to the inset and

shown in b–e. The results are

colored coded with the line
color of the graph and the inset

equation text coordinated either

blue or black. The magenta line
in each is the experimental data

for R1
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separated into 2 vectors, a1 and a2, and similarly for CO,

and N. Then the four exclusive convolutions of these six

vectors (A1B1C1, A2B2C2, or A1B2C1, A2B1C2, or A1B1C2,

A2B2C1, or A2B1C1, A1B2C2) were compared for their

similarity to the r1 projection. Figure 5b–e show the cal-

culated vectors in blue and black versus the experimental

data in magenta. Figure 5b and 5e are very good matches

with 5b visually appearing slightly better. A simple way to

mathematically compare the match of 1D vectors is to take

the dot product; for parallel vectors (a good match) the dot

product will be 1.0, and for antiparallel vectors the dot

product will be -1.0. The dot product of the calculated

versus experimental vectors in Fig. 5b is 0.89 and in

Fig. 5e it is 0.68. Indeed, examining the data from the

previous assignments of NuiA confirms that the correct

assignment is T50 peaks a1,b1,c1 and W84 peaks a2,b2,c2.

To gain more confidence that this is the correct sepa-

ration of these peaks, we can also back calculate the

orthogonal vectors from the projections. Figure 6a–c shows

again the same two residues, with the [1 1 1] projection in

blue and the [2 1 1], [1 2 1], and [1 1 2] projections in

green, respectively. With only two peaks in each spectra

there are now only two exclusive combinations of these

peaks that using Eq. 14 will either reproduce the data

acquired for the orthogonal vector or not. The peaks were

manually separated, for example into r1a and r1b, and r2a

and r2b for Fig. 6a and similarly for Fig. 6b–c. The

orthogonal vectors were calculated according to Eq. 14 for

the separated vectors in the two exclusive combinations.

Figures 6d–f vs. Fig. 6g–i show these comparisons as

indicated in the caption. In each case, only one calculation

makes a good match with the experimental data. One can

assign the spectra by keeping track of which match is

correct, and from which peak in the [1 1 1] projection the

orthogonal peak came from. For example, Fig. 6 was rig-

ged to consistently show that the peak drawn with the blue

asterisks (r1a) in Fig. 6a–c, always combines with the other

peak drawn with the green asterisks (r2a, r3a, and r4a) to

give the red line that matches in the orthogonal spectra

shown in Fig. 6d–f. By following the arrow in Fig. 6 from

the same peak in the [1 1 1] projection to the calculated

orthogonal spectra, the correct assignment of peaks to T50

and W84 can be determined. This confirms the previous

assignments obtained with the forward calculations and

again shows that only the correct pairing of peaks gives rise

to the projected spectra.

Discussion

The basic manipulations of circulant matrices to perform

convolutions and the relations to co-elvolved spectroscopy

were described by Malmodin and Billeter (Malmodin and

Billeter 2005a, 2006). The implementation of their theory,

Fig. 6 Separation of peaks using Eq. 13. a–c The projections r1 (blue
solid line each panel) and r2–4 (green solid line, respectively) at

6.7 ppm. There are peaks from two overlapping residues T50 and

W84. To differentiate the peaks the vectors were split in two vectors,

shown with asterisks (labeled a) or open circles (labeled b) in panels

a, b, and c. The r2 r3, r4, and r1 spectra were used to back calculate the

orthogonal vectors of CA (d, g), CO, (e, h), and N (f, i) shown with

black lines. The calculated spectra with alternate pairing of the

manually separated data are shown with red and blue lines in d–i. Red
lines in d–f indicate pairing of r1a with r2a, r3a, and r4a, respectively,

while blue lines indicate pairing of r1b with r2b, r3b, and r4b,

respectively. Red lines in g–i indicate pairing of r1a with r2b, r3b, and

r4b, respectively, while blue lines indicate pairing of r1b with r2a, r3a,

and r4a, respectively
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PRODECOMP, looked for self-consistent solutions to

Eq. 4 over many projections using a minimization tech-

nique called multiway decomposition (Malmodin and

Billeter 2006; Staykova et al. 2008a, b). The two factors

that differentiate the work presented here from the previous

work are, first, the manipulation of the projections to back

calculate the orthogonal spectra, and second, no multidi-

mensional minimizations. Equation 9 shows that Eq. 5 can

be inverted and orthogonal vectors calculated exactly from

projections with many coupled evolution periods. Addi-

tionally, this suggests a new strategy for what projection

angles to acquire that would ‘‘deconvolute’’ the convoluted

frequencies. For example, this paper demonstrated how the

[2 1 1] projection can be used in concert with the [1 1 1]

project to extract the [1 0 0] orthogonal vector. Using the

theory described here one can image how many other

projections and integers will work as well. To pick a ran-

dom example, the [2 3 1] projection could be used with the

[2 2 1] projection to extract the [0 1 0] orthogonal vector.

For any given angle, the vector model of the projections

can be used to suggest a complimentary angle to extract an

orthogonal vector.

While there are differences, many of the benefits of the

PRODECOMP method apply here as well: There are no

reconstructions from incomplete data, no sparse sampling

artifacts, and no cleaning or correcting procedure. There

are no angle restrictions. And, there are no requirements

that angles be restricted to being ‘on a grid’, where angles

are limited by the resolution of the number of data points.

The appeal of using this procedure to extract the fre-

quencies that coevolve is that one works with spectra at

every step thus permitting rigorous cross validation to

insure that frequencies are matched correctly. The theory

shows how to manipulate the orthogonal spectra to match

the projected spectra and vice versa. Figures 5 and 6

demonstrated how the spectra can be ‘‘decomposed’’

manually to generate the assignments for overlapped

frequencies in the directly detected dimension. The main

assumption is that incorrectly separated peaks will gen-

erate results that do not match real spectra. In the future,

hopefully this can be implemented in a more automated

way.

Again, convolutions correctly describe coevolution only

for single peaks in the 1D spectrum. This will therefore

define the signal to noise limit for this protocol. As noise

peaks get larger they begin to be convoluted with the ‘‘real

peaks’’ and the assumptions break down. In data not shown

random vectors with spectral noise were added to the cal-

culations shown here in Figs. 1, 3 and 4. Up to ten times

the noise could be added before the results became unin-

terpretable showing that this procedure should work

robustly for data significantly worse than that presented

here.

One current detraction of what is presented here is that

this proves to be difficult, but not theoretically impossible,

to work with varying spectral windows for the indirect

dimensions. By setting all the spectral windows to

4,000 Hz, and zero filling each to 256 points, there was no

need to scale the spectra beyond that already mentioned.

This presents a disadvantage for any dimension, like 15N,

which could benefit from a much narrower spectral win-

dow. Another difficulty with varying spectral windows is

how to fill with noise when a vector needs to be scaled to a

smaller Hz/point, so as to avoid dividing by zero when

using Eq. 12. In data not shown, it proved easier to work

with constant spectral windows.

The zero padding and ‘‘noise padding’’ introduced here

to prevent folding of peaks may appear to unnecessarily

complicate the units. In addition, it may appear to eliminate

the usefulness of circulant matrices, in that these matrices

were introduced to correctly calculate the folding of peaks,

but now peaks are prevented from being folded. The

advantage, discussed above, is that there is no ambiguity in

the coordinates of a peak. Another useful feature is that the

zero padding keeps the linewidths narrow. In a traditional

point by point discrete convolution of two vectors of the

same size N, the size of the resulting vector is 2N-1. The

linewidth of the new peak is roughly the sum of the line-

widths of the original peaks. When the resulting vector is

down-sampled to N points, it appears that the linewidth

does not change. In contrast, when using circulant matrices

for convolutions, the size of the resulting vector is only N,

but the linewidth is the sum of the linewidths of the original

two peaks, making it appear as if the linewidth increased.

For only two or three multiplications, like that used in

PRODECOMP, this is generally not a problem. However,

to reach more angles that require M matrix multiplications

the line broadening can become excessive (data not

shown). Hence, the zero and noise padding helps to keep

the line widths narrow, padding the vectors to a size similar

to that done in point by point convolutions.

A final fascinating point, is that the projection vectors [2 1

1] and [1 1 1] are only separated by 19�, in Euclidean space.

This paper demonstrated that this separation is enough to

extract the frequency of one of the orthogonal components,

using convolutions. In contrast, a projection reconstruction

utilizing only the same two vectors would not be expected to

give very good frequency resolution. This comment is not

intended to disparage projection reconstruction. Instead it

emphasizes that the method proposed in this paper for

extracting assignments is significantly different from exist-

ing reconstruction protocols.

In summary, this paper shows an exact method to back

calculate the orthogonal vectors from projections by con-

necting the vector model to describe the projections, and

the circulant matrix theory. The method is similar, but
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deviates from previous methodologies (Malmodin and

Billeter 2005b, 2006; Staykova et al. 2008a). Hopefully the

generalizations presented will stimulate further develop-

ment of algorithms for analyzing data from non-uniform

sampling techniques.
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